cpcb		M/s Malur Effluent Treatment Plant., Malur, Kolar –Karnataka		South Zonal Office, Bangalore		
1	Name/ address of CETP/ company:		M/s Malur CETP, Malur Industrial Estate, Malur Kolar , Karnataka			
2	Area occupi	ed by CETP (plot area):	6.6 acres (3acres built-up green belt)	6.6 acres (3acres built-up area, 3.6 acres- green belt)		
3	Total no. of & skilled pe	staff (including operationa rsons):	l 30 employees	· · · ·		
4	-	son (Name, Designation, t No, FAX, e mail):	Mr. G.V. Gore, Managing Director Cell no. 9342539644, 9844935539 Fax no. 080-22927327 E-mail: <u>cetpmalur@gmail.com</u>			
5	Status of CE (if closed sin	TP: operational or closed nce when):	Partly-Operational			
6	• Valic	Authorization: l up to: ied (date of application):	The consent under Water and Air Act is valid till 30.06.2013. The Hazardous waste authorization is valid till 30.06.2014			
7	Industrial a	rea/estate (s) connected to	KIADB Industrial Area KIADB Industrial Area KIADB Doddaballapur KIADB Industrial Area	Narasapur		
8	Type of industries in the connected industrial areas: CETP is receiving effluent from textile processing, food processing waste, pharmaceutical intermediate w/w, Engineering companies.					
			Type of industries	Number of industries		
			Food Processing Automobile engineering	<u>5</u> 9		
			Pharmaceuticals 7			

	KIADB Industrial Area Jigani P	harmaceuticals 4			
8.1	Number of member industries of CETP:	25			
9	 Method of collection of effluent (pipeline/tanker): If collection is by tankers, average No. of tankers/day: Capacity of tankers, m³: 	The CETP has 9 tankers. 10,000 liters capacity and 2 tankers of 6,000 L capacity for collection of wastewater 9 tankers/day 9 tankers of 10,000 liters capacity and 2 tankers of 6,000 L capacity			
10	Details of flow meters (Type, location and operational status):	The unit has not installed flow meter at the inlet and outlet of CETP.			
11	Treatment capacity: MLD / Design flow of CETP: m ³ /hr	Installed- 140 KLD			
12	Wastewater treated: MLD / Average flow reaching CETP m ³ /hr	Actual- 90 KLD			
13	 Wastewater if bypassed in CETP from treatment: Flow/volume of wastewater bypassing treatment units in CETP: 	No by pass arrangments			
14	Treatment units and dimensions (Attach flow chart also):	Enclosed at Annexure - 4			
15	Details of chemicals used:				
	No. Name of chemical	Quantity, kg/month			
	1 Alum	500			
	2 Ferrous sulphate	200			
	3Polyelectrolyte4Caustic Soda	50 500			
	4 Caustic Soda	500			

Low TDS Strea Parameters	am : Designed inlet norms	SPCB inlet norms	Raw effluent after equalization	Final outlet	Discharg limits (Standarc)
pН	6.0	-	-	7.2	6.0-9.0
SS	120-1150	-	-	10	100
TDS	800-1200	-	-	590	2100
Conductivity	2960-7350	_	_	790	-
BOD	300-2200	_	_	10	_
COD	500-6000	_	_	38	_
0&G	0-13	_	-	Nil	10
NH ₃ -N	-	_	-	10	50
TKN	_	_	_	-	-
Phenol	_	_	_	Nil	_
BOD/COD	1:3.8	_	_	1:3.8	_
Ratio	1010			1010	
Cyanide	Nil	_	-	_	0.2
SBR		SS in mg/1 0-4000	MLVSS ir	0.	DO in mg/1 6.65
SBR High TDS Stre	350		MLVSS ir	0.	
	350		MLVSS ir - Raw effluent after equalization	0.	
High TDS Stre Parameters pH	am: Designed inlet	0-4000 SPCB inlet	- Raw effluent after		6.65 Discharg limits
High TDS Stre Parameters	am: Designed inlet norms	0-4000 SPCB inlet norms	- Raw effluent after equalization	Final outlet	6.65 Discharg limits (Standard)
High TDS Stre Parameters pH	am: Designed inlet norms	0-4000 SPCB inlet norms -	- Raw effluent after equalization -	Final outlet Neutral	6.65 Discharg limits (Standard) 6.0-9.0
High TDS Stre Parameters pH SS TDS Conductivity	am: Designed inlet norms - -	0-4000 SPCB inlet norms - -	- Raw effluent after equalization - -	Final outlet Neutral 10	6.65 Discharg limits (Standard) 6.0-9.0 100
High TDS Stre Parameters pH SS TDS Conductivity BOD	350 eam: Designed inlet norms - - 800-4200	0-4000 SPCB inlet norms - - - -	- Raw effluent after equalization - - -	Final outlet Neutral 10 250 >20	6.65 Discharg limits (Standard) 6.0-9.0 100 2100
High TDS Stre Parameters pH SS TDS Conductivity BOD COD	2350 eam: Designed inlet norms - - 800-4200 -	0-4000 SPCB inlet norms - - - - - - - -	- Raw effluent after equalization - - - -	Final outlet Neutral 10 250 >20 20	6.65 Discharg limits (Standard) 6.0-9.0 100 2100 - - - -
High TDS Stre Parameters pH SS TDS Conductivity BOD COD O & G	350 eam: Designed inlet norms - - 800-4200 - - -	0-4000 SPCB inlet norms	- Raw effluent after equalization - - - - - -	Final outlet Neutral 10 250 >20 20 20 ND	6.65 Discharg limits (Standard) 6.0-9.0 100 2100 - - - - 10
High TDS Stre Parameters pH SS TDS Conductivity BOD COD O & G NH ₃ -N	350 eam: Designed inlet norms - - 800-4200 - - - - -	0-4000 SPCB inlet norms	- Raw effluent after equalization -	Final outlet Neutral 10 250 >20 20	6.65 Discharg limits (Standard) 6.0-9.0 100 2100 - - - -
High TDS Stre Parameters pH SS TDS Conductivity BOD COD O & G	2350 eam: Designed inlet norms - - 800-4200 - - - - - - - - -	0-4000 SPCB inlet norms	- Raw effluent after equalization -	Final outlet Neutral 10 250 >20 20 20 ND	6.65 Discharg limits (Standard) 6.0-9.0 100 2100 - - - - 10
High TDS Stre Parameters PH SS TDS Conductivity BOD COD O & G NH ₃ -N TKN Phenol	350 eam: Designed inlet norms - - 800-4200 - - - - - - - - - - - - - - - - - -	0-4000 SPCB inlet norms	- Raw effluent after equalization -	Final outlet Neutral 10 250 >20 20 20 ND ND	6.65 Discharg limits (Standard) 6.0-9.0 100 2100 - - - 10 50
High TDS Stre Parameters pH SS TDS Conductivity BOD COD O & G NH ₃ -N TKN	350 eam: Designed inlet norms - - 800-4200 - - - - - - - - - - - - - - - - - -	0-4000 SPCB inlet norms	- Raw effluent after equalization -	Final outlet Neutral 10 250 >20 20 20 ND ND -	6.65 Discharg limits (Standarc) 6.0-9.0 100 2100 - - - 10 50 - - 10 50 -

17	Primary sludge management system:	
	 Primary sludge generation rate (m³/day or tons/day): 	• About 3-4 MT/Annum
	 Number & capacity of sludge drying beds: 	• 02 No. SDB
	 Details of any other methods for sludge thickening (filter press/rotary filters etc.) Quantity of sludge stored: 	• No
	Primary sludge disposal-	• Sludge is packed in polythene bags
	*(Secured landfill or TSDF):	and stored in the unit premises and reported that sludge is being
	*(Co-incineration if any):	disposed to TSDF, Ramky.
18	Excess Biological Sludge Management System:	
	 Excess Biological Sludge generation rate: Number and capacity of sludge drying beds: Details of any other methods for sludge thickening (filter press/rotary filters etc.) Quantity of sludge stored: 	NA
	• Excess Biological Sludge Disposal:	
19	Conveyance system for disposal of treated wastewater: Drains/ Pipeline	Pipe line with sprinkler
20	Method of Treated wastewater disposal: River/ Land/ Marine/ Others (Specify)	Part of the treated effluent is discharged on land for irrigation while part of the effluent after filtration at GAF is used by the workers for domestic purposes.
21	Reject Managment	Multiple Effect Evaporator is installed to treat High TDS Effluent
21	Capital cost with breakup of sources of funds:	Rs. 4.3 Crores
22	Operational cost:	Rs. 30 lakhs/month

23	Date of Inspection	May 3, 2013			
24	Inspected by (Name & Designat	ion): Mrs. H.D. Varalaxmi, EE Mrs. Mahima T, AEE			
25	OBSERVATIONS & FINDING	SS			
	 M/s Malur CETP (unit) formerly known as M/s Eco Engineering Malur is situated at Malur Industrial Estate, Kolar. Reportedly, the unit is treating 90 KLD of effluent against the design capacity of 140 KLD. 				
	2. The unit has 25 member industries from different industrial estates located at Malur, Jigani, Bommasandra, Yelahanka and Doddaballapur. Though unit is located at Malur Industrial Estate, only four industries from Malur Industriasl Estate are sending effluents to this unit.				
	3. The unit has 9 tankers of 1	0KL capacity and 2 tankers of 6KL capacity.			
	4. The unit has not provided any flow meters or flow measuring devices at inlet and outlet of CETP and hence quantity of effluent treated and reused was not available				
	5. There was no proper conveyance system for conveying sludge from treatment units to sludge drying beds.				
	6. The unit has two separate treatment system for treatment of high TDS and Low TDS effluent. The unit receives about 60-70 KLD of HTDS and 25-30 KLD of Low TDS effluent. Effluent having TDS in the range of 3000-4000 mg/l is considered as HTDS while TDS below 1000mg/l is considered as LTDS. On the day of inspection only biodegradable treatment system was in operational.				
	7. On the day of inspection HTDS treatment system was not operational and the outer wall of MEE and boiler were rusted. Settling tank and sludge drying beds were filled with HTDS effluent. Reportedly, the capacity of HTDS raw effluent storage tank is 120KL.				
	High TDS treatment System:				
	 The high TDS effluent after screening is treated in Settling tank by the addition of alum. Supernatant from settling tank after adjusting pH to 7 is evaporated in a 3 stage MEE of 30 KL capacity. The reported Feed rate in MEE is 6000-7000 l/hr and MEE is operated for 4-5 days/ week. 				

- 9. The unit has three boilers (two boilers each of 14,000kg/hr and 8000kg/hr operating on bio-fuel and one boiler of 8000 kg/hr operated on diesel) to produce steam for MEE.
- 10. MEE condensate is being reused in the boiler. Semi-concentrate is separated into sludge and wastewater in the centrifuge, the supernatant from centrifuge being treated along with low TDS effluent while sludge is being sent to SDB. MEE concentrate is dried in SDB and disposed at Ramky TSDF.

Low TDS effluent treatment system:

- 11. The unit has provided Cooling tower to reduce the temperature for effective treatment in SBR but however it was not operational.
- 12. Low TDS effluent after screening in both bar screens and fine screens is allowed to settle in a settling tank by the addition of alum. Supernatant from settling tank is treated in Sequential Batch Reactors (SBR). Part of treated effluent is used onland for irrigation within unit premises and part of effluent after treating through sand filter and activated carbon filter is used by workers for domestic purposes. Sludge from settling tank and SBR after drying is disposed to TSDF.
- 13. Completely dried and semi-solid Sludge generated from the unit is packed in polythene bags and stored in the shed. The shed is not properly floored there is possibility of leaching of hazardous waste into the ground.
- 14. The unit is equipped with a laboratory within its premises but however no analysis results were available
- 15. Centrifuge has worn out and was not in operation.
- 16. Grab samples were collected from HTDS collection tank, HTDS concentrate and SBR and results are as follows:

S.No.	Parameter	Parameter High TDS Collectio		Low TDS collection tank		Final Treated Effluent
		n tank	tank	Collectio n tank no. 1	Collection tank no. 2	
1	pН	4.7	4.8	6.0	6.4	7.6
2	EC (µS/cm0	28000	37400	4180	11500	3960
3	TSS (mg/l)	105	90	4	380	12
4	TDS (mg/l)	18200	24480	2450	1590	2296

	5	BOD (mg/l)	2670	3590	15	1571	30
	6	COD (mg/l)	5556	7023	79	5667	99
	7	Sulphate (mg/l)	-	-	73	-	172
	8	Copper (mg/l)	0.23	0.26	0.14	0.284	0.438
	9	Cadmium (mg/l)	0.05	0.10	0.05	0.108	0.05
	10	Chromium (mg/l)	BDL	BDL	BDL	BDL	BDL
	11	Iron (mg/l)	3.16	27.96	1.06	5.27	0.698
	12	Manganese (mg/l)	0.20	0.55	0.22	0.984	0.176
	13	Nickel (mg/l)	0.26	0.44	4.90	0.524	0.994
	14	Lead (mg/l)	BDL	BDL	BDL	BDL	BDL
	15	Zinc (mg/l)	0.84	3.25	0.07	0.6	0.24
	16	Cobalt (mg/l)	0.07	0.14	6.31	0.18	0.076
			Parameter	Aera	tion tank		
			MLSS (mg/l)		195		
30	 found very less which indicates the poor operation. The solid concentration of MEE concentrate (2.5%) stored indicates the poor operation of MEE, the solid concentration was found increased from 1.8 % to 2.5 % which indicates the in adequate treatment system to handle High TDS Effluent. Recommendations w. r. t. specific observations made during inspection: 					icates the in	
	2. I	The CETP shall be achieve the desired a The CETP shall be	standards. directed to a	achieve ze	Ĩ		ý
	3.	reatment system for The CETP shall b surrounding area ar	e directed	to monito	0	-	ality of the
	e t	Present practice of evaporator and sep the CETP shall be d recovery system for	aration of so irected to ins	olids in ce stall adequ	ntrifuge fo	und inadeq of MEE and	uate. Hence drier or salt

	zero discharge.
5.	The CETP shall be directed to install electromagnetic flow meter at the MEE feed, MEE condensate, Concentrate and the steam feed.
6.	The unit shall be directed to appoint qualified and skilled operator to operate CETP.
7.	CETP is receiving effluent from very furthest point , hence KSPCB may be directed to devise a policy so that industries may send their effluent to the nearest CETP.

Mahima T. Scientist 'B' H.D. Varalaxmi Scientist 'C'

> A. Manoharan Zonal Officer

Photographs of M/s Malur CETP

Fig 1: Process flow diagram of Malur CETP

Fig 2: High TDS raw effluent storage tank

Fig. 3- High TDS Settling tank tank

Fig 4: Conveyance of HighTDS effluent from storage tank to concentrate storage tank

Fig 5: MEE

Fig 6: MEE concentrate storage tank

Fig 7: Low TDS effluent storage tank

Fig 8: Low TDS effluent

Fig. 9 - Low TDS effluent Settling tanks

Fig 10: Centrifuge

Fig 11: Sludge drying bed

Fig 12 : Sludge storage shed

Fig 13: Laboratory

June 28, 2013

No. F. Tech/87/CETP-KA/ZOB/2013-14/

То

The Member Secretary, Central Pollution Control Board, Parivesh Bhawan, East Arjun Nagar, Delhi – 110032

Sub: Performance Evaluation report of M/s Malur Effluent Treatment Plant., Malur, Kolar, Karnataka - regarding.

Sir,

With reference to above , a performance evaluation report of Common Effluent Treatment Plant (CETP's) at M/s Malur Effluent Treatment Plant., Malur, Kolar, Karnataka was carried out on May 03, 2013. The inspection report of the above mentioned CETP is submitted for your kind perusal and further action please

Yours faithfully,

Encl : As above

(**A. Manoharan**) I./c Zonal Office